Различие альдегидов и кетонов. Альдегиды и кетоны — номенклатура, получение, химические свойства

Введение

Это единения, содержащие карбонильную группу = С = О. У альдегидов карбонил связан радикалом и водородом. Общая формула альдегидов:

У кетонов карбонил связан с двумя радикалами. Общая формула кетонов:

Альдегиды являются более активными, чем кетоны (у кетонов карбонил как бы блокирован радикалами с обеих сторон).

Кла сс ификация

1.по углеводородному радикалу (предельные, непредельные, ароматические, циклические).

2.по числу карбонильных групп (одна, две и тд.)

Изомерия и номенклатура

Изомерия альдегидов обусловлена изомерией углеродного скелета. У кетонов помимо изомерии углеродного скелета наблюдается изомерия положения карбонильной группы. По тривиальной номенклатуре альдегиды называют соответственно карбоновым кислотам, в которые они переходят при окислении. По научной номенклатуре названия альдегидов складываются из названий соответствующих углеводородов с добавлением окончания аль. Атом углерода альдегидной группы определяет начало нумерации. По эмпирической номенклатуре кетон называют по радикалам, связанным с карбоксилом с добавлением слова кетон. По научной номенклатуре названия кетонов складываются из названий соответствующих углеводородов с добавлением окончания ОН, в конце ставят номер углеродного атома, при котором стоит карбонил. Нумерацию начинают от ближайшего к кетонной группе конца цепи.

Представители предельных альдегидов. CnH2n+1C=O

Представители предельных кетонов

Способы получения

1) Путем окисления спиртов. Из первичных спиртов получаются альдегиды, из вторичных кетоны. Окисление спиртов происходит при действии сильных окислителей (хромовая смесь) при небольшом нагревании. В промышленности в качестве окисления используют кислород воздуха в присутствии катализатора - меди (Cu) при t0= 300-5000С

СН3 - СН2 - СН2 - ОН + О К2Cr2O7 CH3 - CH2 - C =O + HOH

пропанол -1 H

пропаналь

СН3 - СН - СН3 + О К2Cr2O7 СН3 - С - СН3

пропанол -2 пропанон

2) Термическое разложение кальциевых солей карбоновых кислот, причем, если взть соль муравьиной кислоты, то образуются альдегиды, а если других кислот, то кетоны.

О уксусный альдегид

О - Са прокаливание СаСО3 + СН3 - С = О

СН3 -С - О СН3

Это лабораторные способы получения.

3) По реакции Кучерова (из алкинов и воды, катализатор - соли ртути в кислой среде). Из ацетилена образуются альдегиды, из любых других алкинов - кетоны.

СН = СН + НОН СН2 = СН - ОН СН3 - С = О

ацетилен виниловый СН3

спирт уксусный альдегид

СН3 - С = СН + НОН СН3 - С = СН2 СН3 - С = О

пропин ОН СН3

пропенол - 2 ацетон

4) Оксосинтез. Это прямое взаимодействие алкенов с водным газом (СО+Н2) в присутствии кобальтового или никелевого катализаторов под давлением 100- 200 атмосфер при t0 = 100-2000С. По этому способу получают альдегиды

СН3 - СН2 - СН2 - С = О

бутаналь Н

СН3 - СН = СН2 + СО + Н2

СН3 - СН - С = О

2-метилпропаналь

5) Гидролиз дигалогенпроизводных. Если оба галогена находятся при первичном углеродном атоме, то образуется альдегид, если при вторичном - кетон.

СН3 - СН2 - С - CL2 + HOH 2HCL + CH3 - CH2 - C = O

1,1-дихлорпропен пропеналь

СН3 - С - CH3 + HOH 2HCL + CH3 - C = O

2,2-дихлорпропан пропанон

Муравьиный альдегид - газ, другие низшие альдегиды и кетоны - жидкости, легко растворимые в воде; альдегиды обладают удушливым запахом, который при сильном разведении становится приятным(цветочным или фруктовым). Кетоны пахнут довольно приятно. Следовательно карбонил = С =О носитель запаха, поэтому альдегиды и кетоны применяются в парфюмерной промышленности. температура кипения альдегидов и кетонов возрастает по мере увеличения молекулярного веса.

Природа карбонильной группы

Большинство реакций альдегидов и кетонов обусловлено присутствием карбонильной группы. рассмотрим природу карбонила = С =О. например,

1.углерод с кислородом в карбониле связаны двойной связью: одна сигма - связь, другая пи - связь. За счет разрыва П- связи у альдегидов и кетонов идут реакции присоединения (нуклеофильного типа):

R - C = O R - C - O:

Кислород является более электроотрицательным элементом, чем углерод, и поэтому электронная плотность у атома кислорода больше, чем у атома углерода. При реакциях присоединения к углероду будет присоединяться нуклеофильная часть реагента, к кислороду - электрофильная часть.

2.приреакциях замещения может замещаться кислород карбонила. При этом происходит разрыв двойной связи между С и О

3.карбонил влияет на связи С - Н в радикале, ослабляя их, особенно в альфа-положении, то есть рядом с карбонильной группой.

Н - ?С -? С - ?С - С = О

При действии свободных галогенов будет замещаться водород в углеродном радикале при альфа- углеродном атоме.

СН3 - СН2 - СН2 - С = О + СL2 CH3 - CH2 - CH - C = O + HCL

Хлормасляный альдегид

Химические свойства

Из всех классов органических соединений альдегиды и кетоны самые реакционноспособные. Причем в химическом отношении альдегиды более активны, чем кетоны. Для них характерны следующие реакции: окисления, присоединения, замещения, полимеризации, конденсации. Для кетонов не характерны реакции полимеризации.

Реакции окисления

Альдегиды окисляются легко, даже слабыми окислителями HBrO, OH, раствор Фелинга. При окислении альдегидов образуются карбоновые кислоты.

СН3 - С = О + О СН3 - С = О - уксусная кислота

Если окислителем является OH , то выделяется свободное серебро (реакция «серебряного зеркала» - это качественная реакция на альдегиды).

СН3 - С = О + 2OH СН3 - С = О + 2 Ag + 4 NH3 + Н2О

Окисление кетонов происходит гораздо труднее и только сильными окислителями. Продуктами окисления являются карбоновые кислоты. При окислении кетона образуется спиртокетон, затем дикетон, который, разрываясь, образует кислоты.

СН3 - СН2 - С - СН2 - СН3 + О СН3 - СН - С - СН2 - СН -Н2О+О СН3 - С - С - СН2 - СН3 +О +Н2О

О ОН О О О

диэтилкетон спиртокетон дикетон

СН3 - С = О + О = С - СН2 - СН3

уксусная к-та пропионовая к-та

В случае смешанного кетона окисление протекает по правилу Попова - Вагнера, то есть главное направление реакции - окисление соседнего с карбонилом наименее гидрированного атома углерода. Но помимо с главным направлением будет и побочное направление реакции, то есть окислится углеродный атом с другой стороны карбонила. При этом образуется смесь различных карбоновых кислот.

СН3 - С - СН - СН3 - спиртокетон +О - Н2О

СН3 - С - СН2 - СН3 ОН О

О СН2 - С - СН2 - СН3 + О - Н2О

Бутанон-2 спиртокетон

СН3 - С - С - СН3 +О +Н2О 2 СН3 - С = О

дикетон уксусная кислота

СН-С - СН2 - СН3 + О +Н2О НС = О + СН3 - СН2 - С = О

дикетон муравьиная к-та пропионовая к-та

Реакции присоединения

Протекают за счет разрыва пи-связи в карбониле. Эти реакции нуклеофильного присоединения, то есть сначала к положительно заряженному углероду карбонила присоединяется нуклеофильная часть реагента со свободной электронной парой (протекает медленно):

С+ = О - + :Х - = С - О -

Вторая стадия - присоединение протона или другого катиона к образовавшемуся аниону (протекает быстро):

С - О - + Н + = С - ОН

1.Присоединение водорода.

При этом из альдегидов получаются первичные спирты, из кетонов - вторичные. Реакция протекает в присутствии катализаторов Ni, Pt и др.

СН3 - С = О + Н + : Н - СН3 - С - Н

уксусный альдегид этанол

СН3 - С - СН3 + Н+ : Н - СН3 - СН - СН3

пропанон пропанол -2

2.Присоединение бисульфата натрия (гидросульфата):

R - C = O + HSO3Na R - C - SO3Na

При этом образуются бисульфитные производные. Эту реакцию используют для очистки альдегидов и кетонов и выделения их из примесей.

3.Присоединение синильной кислоты. При этом образуются?- оксинитрилы, которые являются промежуточными продуктами синтеза оксикислот, аминокислот:

R - C = O + HCN R - C - C =N

Оксинитрил

4. Присоединение аммиака NH3. При этом образуются оксиамины.

R - C = O + H - NH2 CH3 - CH - NH2

Оксиамин

5. Присоединение магнийгалогенорганических соединений (реактив Гриньяра). Реакцию используют для получения спиртов.

6.Присоединение спиртов (безводных). При этом первоначально образуются полуацетали (как обычная реакция присоединения). Затем при нагревании с избытком спирта образуются ацетали (как простые эфиры).

R - C = O + СН3 - ОН R - CН - О - СН3 +СН3ОН R - CН - О - СН3

H ОН О - СН3

полуацеталь ацеталь

В природе очень много соединений полуацетального и ацетального характера, особенно среди углеводов (сахаров).

Реакции замещения

Кислород карбонильных групп может замещаться на галогены и некоторые азотсодержащие соединения.

1.Замещение галогенами. Происходит при действии на альдегиды и кетоны фосфорных соединений галогенов PCL3 и PCL5. При действии же свободными галогенами замещается водород в углеводородном радикале при?-углеродном атоме.

PCL5 CH3 - CH2 - CH -CL2 + POCL3

СН3 - СН2 - С = О 1,1-дихлорпопин (фосфора хлорокись)

Н +CL2 CH3 - CH - CH = O + HCL

пропаналь CL

Монохлорпропионовый альдегид

2.Реакция с гидроксиамином NH2OH. При этом образуются окислы альдегидов (альдоксилы) и кетонов (кетоксины).

СН3 - СН = О + Н2N - OH CH3 - CH - N - OH + H2O

уксусный альдегид оксиэтаналь

Эту реакцию применяют для количественного определения карбоксильных соединений.

3.Реакция с гидразином NH2 - NH2 . Продуктами реакции являются гидразины (когда реагирует одна молекула альдегида или кетона) и азины (когда реагируют две молекулы).

СН3 - СН = О + NH2 - NH2 СН3 - СН = N - NH2

этаналь гидразин гидразин этаналь

СН3 - СН = N - NH2 + О = СН - СН3 СН3 - СН =N - N = НС - СН3

азин этаналь (альдазин)

4.Реакции с фенилгидразином. С6Н5 - NH - NH2 . Продуктами реакции являются фенилгидразины.

СН3 - СН = О + Н2N - NH - C6H5 CH3 - CH = N - NH - C6H5

Фенилгидразонэтаналь

Окислы, гидразины, азины, фенилгидразины - твердые кристаллические вещества с характерными температурами плавления, по которым определяют природу (строение) карбонильного соединения.

Реакции полимеризации

Характерны только для альдегидов. Но и то, только газообразные и летучие альдегиды (муравьиный, уксусный) подвергаются полимеризации. Это очень удобно при хранении этих альдегидов. муравьиный альдегид полимеризуется в присутствии серной кислоты или соляной, при нормальной температуре. Коэффициент полимеризации n=10-50. Продукт полимеризации - твердое вещество, называется - полиоксиметилен (формалин).

Н - С = О - С - О - С - О - ...- С - … - С - О -

Н Н Н Н Н n

Полиоксиметилен

Это твердое вещество, но его можно превратить в муравьиный альдегид, разбавляя водой и слегка подогревая.

Уксусный альдегид под влиянием кислот образует жидкий циклический триммер- паральдозу и твердый тетрамер - метальдозу («сухой спирт»).

3 СН3 - СН = О О

СН3 - НС СН - СН3

паральдегид

4 СН3 - СН = О СН3 - НС О

Метальдегид

Реакции конденсации

1.Альдегиды в слабо основной среде (в присутствии ацетона калия, поташа, сульфата калия) подвергаются альдольной конденсации с образованием альдегидо - спиртов, сокращенно называемых альдолями. Разработана эта реакция химиком А.П. Бородиным (он же композитор). В реакции участвует одна молекула своей карбонильной группой, а другая молекула водородом при?- углеродном атоме.

СН3 - СН = О + НСН2 - СН = О СН3 - СН - СН2 - СН = О

ОН альдоль

(3 - оксибутаналь или?-оксимасляный альдегид)

СН3 - СН - СН2 - СН = О + НСН2 - СН = О СН3 - СН - СН2 - СН - СН2 -СН =О

гексенциол-3,5-аль

С каждым разом увеличивается число групп ОН. Получается альдегидная смола при уплотнении большого числа молекул.

2. Кротоновая конденсация. для альдегидов она является продолжением альдольной конденсации, то есть при нагревании альдоль отщепляет воду с образованием непредельного альдегида.

СН3 - СН - СН2 - СН = О СН3 - СН = СН - С = О

кротоновый альдегид

Рассмотрим эти реакции для кетонов.

СН3 - С = О + НСН2 - С = О СН3 - С - СН2 - С = О СН3 - С = СН - С = О

СН3 СН3 ОН СН3 СН3 СН3 СН3

4 - окси - 4 - метилпентанон-2 4 - метилпентан -3-он-2

3.Сложноэфирная конденсация. Характерна только для альдегидов. Разработана В.Е.Тищенко. протекает в присутствии катализаторов алкоголятов алюминия (CH3 - CH2 - O)3 AL.

CH3 - CH = O + O = HC - CH3 CH3 - СН2 - О - С = О

уксусноэтиловый эфир

1.СН2 = СН - СН =О - пропен-2-аль - акриловый альдегид или акролеин

2.СН3 - СН = СН - СН = О - бутен - 2 - аль - кротоновый альдегид

Акролеин иначе называют чад, он получается при нагревании горении жиров. В химическом отношении непредельные альдегиды обладают всеми свойствами предельных по карбонильной группе, а за счет двойной связи в радикале могут вступать в реакции присоединения.

У этих альдегидов сопряженная система двойных связей, поэтому в химическом отношении они отличаются реакциями присоединения. Присоединение водорода, галогенов, галогенводородов происходит по концам сопряженной системы.

Электронная плотность смещена к кислороду и к нему направляются положительно заряженная часть реагента, а к положительно поляризованному углероду - отрицательная часть реагента.

СН2+ = СН- - СН+= О- + Н+: Br- CH2 - CH = CH - OH CH2 - CH2 - CH = O

3-бромпропаналь

Образующаяся при этом енольная форма альдегида немедленно превращается в более устойчивую карбонильную форму. Таким образом присоединение галогенводородов в радикал идет против правила Марковникова.

Ароматические альдегиды

Представители С6Н5 -СН = О - бензойный альдегид. Это жидкость с запахом горького миндаля, содержится в косточках слив, вишен, диких абрикос и других плодах.

С писок использованной литературы

1) Гранберг И.И. Органическая химия. - М., 2002

2) Ким А.М. Органическая химия. - Новосибирск, 2007

Альдегиды и кетоны – это производные углеводородов, содержащие функциональную карбонильную группу СО . В альдегидах карбонильная группа связана с атомом водорода и одним радикалом, а в кетонах с двумя радикалами.

Общие формулы:

Названия распространенных веществ этих классов приведены в табл. 10.

Метаналь – бесцветный газ с резким удушающим запахом, хорошо растворим в воде (традиционное название 40 %‑ного раствора– формалин), ядовит. Последующие члены гомологического ряда альдегидов – жидкости и твердые вещества.

Простейший кетон – пропанон‑2, более известный под названием ацетон, при комнатной температуре – бесцветная жидкость с фруктовым запахом, t кип = 56,24 °C. Хорошо смешивается с водой.

Химические свойства альдегидов и кетонов обусловлены присутствием в них карбонильной группы СО; они легко вступают в реакции присоединения, окисления и конденсации.

В результате присоединения водорода к альдегидам образуются первичные спирты:

При восстановлении водородом кетонов образуются вторичные спирты:

Реакция присоединения гидросульфита натрия используется для выделения и очистки альдегидов, так как продукт реакции малорастворим в воде:

(действием разбавленных кислот такие продукты превращаются в альдегиды).

Окисление альдегидов проходит легко под действием кислорода воздуха (продукты – соответствующие карбоновые кислоты). Кетоны сравнительно устойчивы к окислению.

Альдегиды способны участвовать в реакциях конденсации . Так, конденсация формальдегида с фенолом протекает в две стадии. Вначале образуется промежуточный продукт, являющийся фенолом и спиртом одновременно:

Затем промежуточный продукт реагирует с другой молекулой фенола, и в результате получается продукт поликонденсации фенолформальдегидная смола:

Качественная реакция на альдегидную группу – реакция «серебряного зеркала», т. е. окисление группы С(Н)O с помощью оксида серебра (I) в присутствии гидрата аммиака:

Аналогично протекает реакция с Cu(ОН) 2 , при нагревании появляется красный осадок оксида меди (I) Cu 2 O.

Получение : общий способ для альдегидов и кетонов – дегидрирование (окисление) спиртов. При дегидрировании первичных спиртов получают альдегиды , а при дегидрировании вторичных спиртов – кетоны . Обычно дегидрирование протекает при нагревании (300 °C) над мелкораздробленной медью:

При окислении первичных спиртов сильными окислителями (перманганат калия, дихромат калия в кислотной среде) процесс трудно остановить на стадии получения альдегидов; альдегиды легко окисляются до соответствующих кислот:


Более подходящим окислителем является оксид меди (II):

Ацетальдегид в промышленности получают по реакции Кучерова (см. 19.3).

Наибольшее применение из альдегидов имеют метаналь и этаналь. Метаналь используют для производства пластмасс (фенопластов), взрывчатых веществ, лаков, красок, лекарств. Этаналь – важнейший полупродукт при синтезе уксусной кислоты и бутадиена (производство синтетического каучука). Простейший кетон – ацетон используют в качестве растворителя различных лаков, ацетатов целлюлозы, в производстве кинофотопленки и взрывчатых веществ.

Первая группа свойств — реакции присоединения. В карбонильной группе между углеродом и кислородом присутствует двойная связь, которая, как вы помните, состоит из сигма-связи и пи-связи. В реакциях присоединения пи-связь рвется и образуются две сигма связи — одна с углеродом, вторая — с кислородом. На углероде сосредоточен частичный положительный заряд, на кислороде — частичный отрицательный. Поэтому к углероду присоединяется отрицательно заряженная частица реагента, анион, а к кислород — положительно заряженная часть молекулы.

Первое свойство — гидрирование, присоединение водорода.

Реакция проходит при нагревании. Применяется уже известный вам катализатор гидрирования — никель. Из альдегидов получаются первичные спирты, из кетонов вторичные.

У вторичных спиртов гидроксогруппа связана со вторичным атомом углерода.

Второе свойство — гидратация, присоединение воды. Эта реакция возможна только для формальдегида и ацетальдегида. Кетоны совсем не реагируют с водой.

Все реакции присоединения идут таким образом, что плюс идет к минусу, а минус к плюсу.

Как вы помните из видео про спирты , наличие двух гидроксогрупп у одного атома почти невозможная ситуация, такие вещества крайне неустойчивы. Так вот конкретно два этих случая — гидрат формальдегида и уксусного альдегида — возможны, хотя и существуют только в растворе.

Сами реакции знать не обязательно. Скорее всего, вопрос на экзамене может звучать как констатация факта, допустим, с водой реагируют и перечислены вещества. Среди их перечня которых могут быть метаналь или этаналь.

Третье свойство — присоединение синильной кислоты.

Снова плюс идет к минусу, а минус к плюсу. Получаются вещества, называемые гидроксинитрилами. Опять же, сама реакция встречается нечасто, но знать об этом свойстве нужно.

Четвертое свойство — присоединение спиртов.

Здесь снова не нужно знать наизусть уравнение реакции, просто надо понимать, что такое взаимодействие возможно.

Как обычно в реакциях присоединения к карбонильной группе — плюс к минусу, а минус к плюсу.

Пятое свойство — реакция с гидросульфитом натрия.

И снова, реакция довольно сложная, выучить ее вряд ли получится, но это одна из качественных реакций на альдегиды, потому что полученная натриевая соль выпадает в осадок. То есть по факту вы должны знать, что альдегиды реагируют с гидросульфитом натрия, этого будет достаточно.

На этом закончим с первой группой реакций. Вторая группа — реакции полимеризации и поликонденсации.

2. Полимеризация и поликонденсация альдегидов

С полимеризацией вы знакомы: полиэтилен, бутадиеновый и изопреновый каучуки, поливинилхлорид — это продукты объединения множества молекул (мономеров) в одну большую, в единую полимерную цепь. То есть получается один продукт. При поликонденсации происходит то же самое, но помимо полимера получаются еще низкомолекулярные продукты, например, вода. То есть получается два продукта.

Итак, шестое свойство — полимеризация. Кетоны в эти реакции не вступают, промышленное значение имеет только полимеризация формальдегида.

Пи-связь рвется и образуются две сигма связи с соседними мономерами. Получается полиформальдегид, называемый также параформ. Вероятнее всего, вопрос на экзамене может звучать так: в реакции полимеризации вступают вещества. И приведен список веществ, среди которых может быть в формальдегид.

Седьмое свойство — поликонденсация. Еще раз: при поликонденсации помимо полимера получается еще низкомолекулярное соединение, например, вода. Формальдегид вступает в такую реакцию с фенолом. Для наглядности сначала запишем уравнение с двумя молекулами фенола.

В результате получается такой димер и отщепляется молекула воды. Теперь запишем уравнение реакции в общем виде.

Продуктом поликонденсации является феноло-формальдегидная смола. Она находит широкое применение — от клеев и лаков до пластмасс и компонента древесно-стружечных плит.

Теперь третья группа свойств — реакции окисления.

3. Окисление альдегидов и кетонов

Восьмой реакцией в общем списке является качественная реакция на альдегидную группу — окисление аммиачным раствором оксида серебра. Реакция «серебряного зеркала». Скажу сразу, кетоны не вступают в эту реакцию, только альдегиды.

Альдегидная группа окисляется до карбоксильной, кислотной группы, но в присутствии аммиака, который является основание, сразу же происходит реакция нейтрализации и получается соль — ацетат аммония. Серебро выпадает в осадок, покрывая пробирку изнутри и создавая зеркальную поверхность. Эта реакция встречается на ЕГЭ постоянно.

Кстати, эта же реакция является качественной на другие вещества, имеющие альдегидную группу, например, на муравьиную кислоту и ее соли, а также на глюкозу.

Девятая реакция тоже качественная на альдегидную группу — окисление свежеосажденным гидроксидом меди два. Здесь тоже замечу, что кетоны не вступают в эту реакцию.

Визуально будет наблюдаться сначала образование желтого осадка, который потом становится красным. В некоторых учебниках встречается информация, что сначала образуется гидроксид меди один, имеющий желтый цвет, который затем распадается на красный оксид меди один и воду. Так вот это неверно — по последним данным в процессе выпадения осадка меняется размер частиц оксида меди один, которые в конечном счете достигают размеров, окрашенных именно в красный цвет. Альдегид окисляется до соответствующей карбоновой кислоты. Реакция встречается на егэ очень часто.

Десятая реакция — окисление альдегидов подкисленным раствором перманганата калия при нагревании.

Происходит обесцвечивание раствора. Альдегидная группа окисляется до карбоксильной, то есть альдегид окисляется до соответствующей кислоты. Для кетонов эта реакция не имеет практического смысла, поскольку происходит разрушение молекулы и в результате получается смесь продуктов.

Важно отметить, что муравьиный альдегид, формальдегид, окисляется до углекислого газа, потому как соответствующая ему муравьиная кислота сама не устойчива к действию сильных окислителей.

В итоге углерод переходит из степени окисления 0 в степень окисления +4. Напомню, что и метанол, как правило, в таких условиях окисляется по максимуму до CO 2 , проскакивая стадию и альдегида, и кислоты. Эту особенность надо запомнить.

Одиннадцатая реакция — горение, полное окисление. И альдегиды, и кетоны сгорают до углекислого газа и воды.

Запишем уравнение реакции в общем виде.

По закону сохранения массы атомов слева должно быть столько же, сколько атомов справа. Потому что ведь в химических реакциях атомы никуда не деваются, а просто изменяется порядок связей между ними. Так вот молекул углекислого газа будет столько же, сколько и атомов углерода в молекуле карбонильного соединения, поскольку в состав молекулы входит один атом углерода. То есть n молекул CO 2 . Молекул воды будет в два раза меньше, чем атомов водорода, то есть 2n/2, а значит просто n.

Атомов кислорода слева и справа одинаковое количество. Справа их 2n из углекислого газа, потому что в каждой молекуле два атома кислорода, плюс n воды, итого 3n. Слева атомов кислорода столько же — 3n, но один из атомов находится в молекуле альдегида, значит его надо вычесть из общего количества, чтобы получить количество атомов, приходящихся на молекулярный кислород. Выходит 3n-1 атомов содержит молекулярный кислород, а значит молекул в 2 раза меньше, потому как в состав одной молекулы входят 2 атома. То есть (3n-1)/2 молекул кислорода.

Таким образом, мы составили уравнение сгорания карбонильных соединений в общем виде.

И, наконец, двенадцатое свойство, относящееся к реакциям замещения — галогенирование по альфа-атому углерода. Еще раз обратимся к строению молекулы альдегида. Кислород оттягивает на себя электронную плотность, создавая частичный положительный заряд а углероде. Метильная группа пытается компенсировать этот положительный заряд, смещая к нему электроны от водорода по цепи сигма-связей. Связь углерод-водород становится более полярной и водород легче отрывается при атаке реагентом. Такой эффект наблюдается только для альфа-атома углерода, то есть атома следующего за альдегидной группой, вне зависимости от длины углеводородного радикала.

Таким образом, возможно получение, например, 2-хлорацетальдегида. Возможно дальнейшее замещение атомов водорода до трихлорэтаналя.

Слово альдегид было придумано как сокращение латинского alcohol dehydrogenatus - дегидрированный спирт, самый популярный альдегид - формальдегид, из него делают смолы, синтезируют лекарства и как консервант. Формула альдегида - R-CHO, соединение, в котором карбонильная группа соединена с водородом и радикалом.

Слово кетон произошло от слова ацетон, младшего соединения из семейства кетонов. Кетоны используются как растворители, лекарства и для синтеза полимеров. Формула кетона - R-C(O)-R, соединение, в котором карбонильная группа соединена с двумя радикалами.

Структура и свойства карбонильной группы

Карбонильная группа основана на связи атома углерода и атома кислорода посредством α- и π-связей. Резонансная структура группы определяет высокую полярность соединения и электронное облако сдвинуто в сторону кислорода: C δ+ =O δ- . Введение электроотрицательных элементов в уменьшает полярность связи, повышая положительный заряд молекулы. Нуклеофильные заместители увеличивают отрицательный заряд кислорода.

Атом углерода в карбонильной группе является сильным электрофилом (присоединяет электроны), поэтому большинство реакций альдегидов и кетонов осуществляется нуклеофильными реактивами (основания Льюиса). Логично, атом кислорода является сильным нуклеофилом, и реакции с атомом кислорода возможны с применением электрофилов (кислот Льюиса).

Реакция карбонильной группы с основанием Льюиса
(R)(R)C δ+ =O δ- + B: → (R)(R)C(B)-O
Реакция карбонильной группы с кислотой Льюиса
(R)(R)C δ+ =O δ- + Y: → (R)(R)C-O-Y

В дополнение, неразделённые электроны кислорода наделяют его слабыми свойствами основания, поэтому те альдегиды и цетоны, которые не растворяются в воде, растворяются в концентрированной серной кислоте.

Физические свойства карбонильной группы

Высокая полярность связи C=O образует высокий дипольный момент, из-за чего носители карбоксильной группы имеют более высокую температуру кипения, по сравнению с углеводородами.

Неразделённые электроны в атоме кислорода образуют водородную связь с молекулами воды, поэтому, начиная с пяти атомов углерода в радикалах, альдегиды и кетоны плохо растворяются в воде или не растворяются вовсе.

Альдегиды и кетоны, имеющие до 12 атомов углерода - жидкости. Алифатические соединения с карбонильной группой имеют плотность примерно 0.8, поэтому плавают на поверхности воды, циклогексанон имеет плотность около единицы, ароматические альдегиды и кетоны имеют плотность чуть больше, чем плотность воды.

Реакции альдегидов и кетонов

Присоединение воды

В процессе реакции воды с альдегидами и кетонами образуются диолы (гликоли, двухатомные спирты). Реакция протекает с использованием катализатора - кислотой или основанием и является двусторонней:

RR-CO + H-OH ↔ R R\ C /OH -OH

Присоединение нуклеофильных углеродов

Важные нуклеофильные соединения, реагирующие с альдегидами и кетонами - металлорганические соеденинения (органические соединения, в молекулах которых существует связь атома металла с атомом/атомами углерода). Одни из представителей металлорганических соединений - реактивы Гриньяра (общая формула - R-Mg-X), в реакциях с альдегидами и кетонами образуют спирты:

RH-C=O + R-C - H 2 -Mg + -Cl - → RH-С-(O-MgCl)(CH 2 -R)
RH-С-(O-MgCl)(CH 2 -R) + H-OH → RH-C-CH 2 R + OH-Mg-Cl

Окисление альдегидов и кетонов

При окислении, альдегиды находятся на промежуточном этапе между спиртами и карбоновыми кислотами:

В присутствии водорода и кислорода:
R-CH 2 -OH ↔ R-C(=O)-H ↔ R-COOH

Альдегиды легко окисляются, что позволяет использовать более мягкие окислители, чем простой кислород. Ароматические альдегиды подвергаются окислению легче, чем алифатические. Проблема окисления альдегидов - в образовании побочных продуктов.

Кетоны окисляются с трудом, для окисления кетонов необходимо использовать сильные окислители и большое количество тепла. В результате окисления разрывается связь C-C и образовывается кислота (есть исключение):

В присутствии KMnO 4 , H и большого количества тепла :
CH 3 -C(=O)-CH 2 CH 3 → CH 3 -C(=O)-OH + CH 3 CH 2 -C(=O)-OH

Исключением является окисление диоксидом селена, SeO 2 , метил-группа, следующая за карбонильной, окисляется, преобразовываясь в другую карбонильную группу. Например, метилэтилкетон окисляется в диацетил:

Окисление метилэтилкетона в диацетил:
CH 3 CH 2 -C(=O)-CH 3 + SeO 2 → CH 3 -C(=O)-C(=O)-CH 3 + H 2 O + Se

Лёгкость, с которой окисляются альдегиды, позволяет легко отличить их от кетонов, для этого используются мягкие окислители, такие как: реактив Толленса (гидроксид диамминсеребра, Ag(NH 3) 2 OH), реактив Фелинга (алкалиновый раствор ионов меди Cu в Сегнетовой соли KNaC 4 H 6 O 6 ·4H 2 O) и раствор Бенедикта (ионы меди с цитратом и карбонатом натрия). Ароматические альдегиды реагируют с реактивом Толленса, но не реагируют с реактивами Бенедикта и Фелинга, что используется для определения количества алифатических и ароматных альдегидов.

Полимеризация альдегидов

Паральдегид

Ацетальдегид имеет температуру кипения 20°C, что затрудняет его хранение и применение. При обработке ацетальдегида кислотой при низкой температуре, ацетальдегид соединяется в цикличную тройную молекулу - паральдегид, с температурой кипения 120°C. Паральдегид при небольшом нагреве деполимеризуется, высвобождая три молекулы ацетальдегида.

Формальдегид

Для удобства транспортировки и хранения, формальдегид продаётся не в форме газа, а в виде формалина - водного раствора с содержанием 37-40% параформальдегида, OH(CH 2 O) n H, со средним значением n=30. Параформальдегид - белое аморфное вещество, твёрдое, получаемое медленным выпариванием формалина при низком давлении. Полимеризация происходит за счёт присоединения друг к другу молекул формальдегида:

CH 2 =O + H 2 O ↔
+ n → HO-(CH 2 O) n+1 -H

Полимер Дерлин (полиоксиметилен) является хорошим линейным пластиком с высокой молекулярной массой, дерлин обладает отличными характеристиками прочности и эластичности.

Альдегиды и кетоны имеют в своем составе карбонильную функциональную группу >С=О и относятся к классу карбонильных соединений. Также их называют оксосоединениями. Несмотря на то что эти вещества относятся к одному классу, из-за особенностей строения их все же разделяют на две большие группы.

В кетонах атом углерода из группы >С=О соединен с двумя одинаковыми или различными углеводородными радикалами, обычно они имеют вид: R-СО-R". Такую форму карбонильной группы называют еще кетогруппой или оксогруппой. В альдегидах же карбонильный углерод соединен только с одним углеводородным радикалом, а оставшаяся валентность занимается атомом водорода: R-СОН. Такую группу принято называть альдегидной. Благодаря этим различиям в строении альдегиды и кетоны ведут себя немного по-разному при взаимодействии с одними и теми же веществами.

Карбонильная группа

Атомы С и О в этой группе находятся в sp 2 -гибридизированном состоянии. Углерод за счет sp 2 -гибридных орбиталей имеет 3 σ-связи, расположенные под углом примерно в 120 градусов в одной плоскости.

Атом кислорода обладает гораздо большей электроотрицательностью, чем углеродный атом, а поэтому стягивает на себя подвижные электроны π-связи в группе >С=О. Поэтому на атоме О возникает избыточная электронная плотность δ - , а на атоме С, напротив, происходит ее уменьшение δ + . Этим и объясняются особенности свойств альдегидов и кетонов.

Двойная связь С=О более прочная, чем С=С, но вместе с тем и более реакционно способная, что объясняется большой разницей в электроотрицательностях атомов углерода и кислорода.

Номенклатура

Как и для всех других классов органических соединений, существуют различные подходы к наименованию альдегидов и кетонов. В соответствии с положениями номенклатуры ИЮПАК, наличие альдегидной формы карбонильной группы обозначается суффиксом -аль, а кетонной -он. Если карбонильная группа является старшей, то она определяет порядок нумерации атомов С в основной цепи. В альдегидной карбонильный атом углерода является первым, а в кетонах атомы С нумеруют с того края цепи, к которому ближе группа >С=О. С этим связана необходимость обозначать положение карбонильной группы в кетонах. Делают это, записывая соответствующую цифру после суффикса -он.

Если карбонильная группа не является старшей, то по правилам ИЮПАК ее наличие указывают приставкой -оксо для альдегидов и -оксо (-кето) для кетонов.

Для альдегидов широко применяют тривиальные названия, получаемые от наименования кислот, в которые они способны превращаться при окислении с заменой слова "кислота" на "альдегид":

  • СΗ 3 -СОН уксусный альдегид;
  • СΗ 3 -СН 2 -СОН пропионовый альдегид;
  • СΗ 3 -СН 2 -СН 2 -СОН масляный альдегид.

Для кетонов распространены радикально функциональные названия, которые складываются из наименований левого и правого радикалов, соединенных с карбонильным атомом углерода, и слова "кетон":

  • СΗ 3 -СО-СН 3 диметилкетон;
  • СΗ 3 -СΗ 2 -СО-СН 2 -СН 2 -СН 3 этилпропилкетон;
  • С 6 Η 5 -СО-СΗ 2 -СΗ 2 -СΗ 3 пропилфенилкетон.

Классификация

В зависимости от характера углеводородных радикалов класс альдегидов и кетонов делят на:

  • предельные - атомы С связаны друг с другом только одинарными связями (пропаналь, пентанон);
  • непредельные - между атомами С имеются двойные и тройные связи (пропеналь, пентен-1-он-3);
  • ароматические - содержат в своей молекуле бензольное кольцо (бензальдегид, ацетофенон).

По числу карбонильных и наличию других функциональных групп различают:

  • монокарбонильные соединения - содержат только одну карбонильную группу (гексаналь, пропанон);
  • дикарбонильные соединения - содержат две карбонильные группы в альдегидной и/или кетонной форме (глиоксаль, диацетил);
  • карбонильные соединения, содержащие также другие функциональные группы, которые, в свою очередь, делятся на галогенкарбонильные, гидроксикарбонильные, аминокарбонильные и т.д.

Изомерия

Наиболее характерной для альдегидов и кетонов является структурная изомерия. Пространственная возможна тогда, когда в углеводородном радикале присутствует асимметрический атом, а также двойная связь с различными заместителями.

  • Изомерия углеродного скелета. Наблюдается у обоих типов рассматриваемых карбонильных соединений, но начинается с бутаналя в альдегидах и с пентанона-2 в кетонах. Так, бутаналь СН 3 -СΗ 2 -СΗ 2 -СОН имеет один изомер 2-метилпропаналь СΗ 3 -СΗ(СΗ 3)-СОН. А пентанон-2 СΗ 3 -СО-СΗ 2 -СΗ 2 -СΗ 3 изомерен 3-метилбутанону-2 СΗ 3 -СО-СΗ(СΗ 3)-СΗ 3 .
  • Межклассовая изомерия. Оксосоединения с одинаковым составом изомерны между собой. Например, составу С 3Η 6 О соответствуют пропаналь СН 3 -СΗ 2 -СОН и пропанон СΗ 3 -СО-СΗ 3 . А молекулярная формула альдегидов и кетонов С 4 Н 8 О подходит бутаналю СН 3 -СΗ 2 -СΗ 2 -СОН и бутанону СН 3 -СО-СΗ 2 -СΗ 3 .

Также межклассовыми изомерами для карбоксильных соединений являются циклические оксиды. Например, этаналь и этиленоксид, пропанон и пропиленоксид. Кроме того, непредельные спирты и простые эфиры также могут иметь общий состав и оксосоединениями. Так, молекулярную формулу С 3 Н 6 О имеют:

  • СΗ 3 -СΗ 2 -СОН - пропаналь;
  • СΗ 2 =СΗ-СΗ 2 -ОН - ;
  • СΗ 2 =СΗ-О-СН 3 - метилвиниловый эфир.

Физические свойства

Несмотря на то что молекулы карбонильных веществ полярны, в отличие от спиртов, альдегиды и кетоны не имеют подвижного водорода, а значит, не образуют ассоциатов. Следовательно, температуры плавления и кипения их несколько ниже, чем у соответствующих им спиртов.

Если сравнивать альдегиды и того же состава кетоны, то у последних t кип несколько выше. С увеличением молекулярной массы t пл и t кип оксосоединений закономерно повышаются.

Низшие карбонильные соединения (ацетон, формальдегид, уксусный альдегид) хорошо растворимы в воде, высшие же альдегиды и кетоны растворяются в органических веществах (спиртах, эфирах и т.д.).

Пахнут оксосоединения весьма различно. Низшие их представители имеют резкие запахи. Альдегиды, содержащие от трех до шести атомов С, пахнут очень неприятно, а вот высшие их гомологи наделены цветочными ароматами и даже применяются в парфюмерии.

Реакции присоединения

Химические свойства альдегидов и кетонов обусловлены особенностями строения карбонильной группы. Из-за того, что двойная связь С=О сильно поляризована, то под действием полярных агентов она легко переходит в простую одинарную связь.

1. Взаимодействие с синильной кислотой. Присоединение HCN в присутствии следов щелочей происходит с образованием циангидринов. Щелочь добавляют для повышения концентрации ионов CN - :

R-СОН + NCN ―> R-СН(ОН)-CN

2. Присоединение водорода. Карбонильные соединения легко могут восстанавливаться до спиртов, присоединяя водород по двойной связи. При этом из альдегидов получают первичные спирты, а из кетонов - вторичные. Реакции катализируются никелем:

Н 3 С-СОН + Н 2 ―> Н 3 С-СΗ 2 -ОΗ

Η 3 С-СО-СΗ 3 + Η 2 ―> Н 3 С-СΗ(ОΗ)-СΗ 3

3. Присоединение гидроксиламинов. Эти реакции альдегидов и кетонов катализируются кислотами:

Н 3 С-СОН + NH 2 OH ―> Η 3 С-СΗ=N-ОН + Н 2 О

4. Гидратация. Присоединение молекул воды к оксосоединениям приводит к образованию гем-диолов, т.е. таких двухатомных спиртов, в которых две гидроксильные группы присоединены к одному атому углерода. Однако такие реакции обратимы, полученные вещества тут же распадаются с образованием исходных веществ. Электроноакцепторные группы в данном случае смещают равновесие реакций в сторону продуктов:

>С=О + Η 2 <―> >С(ОΗ) 2

5. Присоединение спиртов. В ходе этой реакции могут получаться различные продукты. Если к альдегиду присоединяется две молекулы спирта, то образуется ацеталь, а если только одна, то полуацеталь. Условием проведения реакции является нагревание смеси с кислотой или водоотнимающим агентом.

R-СОН + НО-R" ―> R-СН(НО)-О-R"

R-СОН + 2НО-R" ―> R-СН(О-R") 2

Альдегиды с длинной углеводородной цепью склонны к внутримолекулярной конденсации, в результате которой образуются циклические ацетали.

Качественные реакции

Понятно, что при отличающейся карбонильной группе в альдегидах и кетонах химия их тоже различна. Порой необходимо понять, к какому из этих двух типов относится полученное оксосоединение. легче, чем кетоны, происходит это даже под действием оксида серебра или гидроксида меди (II). При этом карбонильная группа изменяется в карбоксильную и образуется карбоновая кислота.

Реакцией серебряного зеркала принято называть окисление альдегидов раствором оксида серебра в присутствии аммиака. Фактически в растворе образуется комплексное соединение, которое и воздействует на альдегидную группу:

Ag 2 O + 4NH 3 + Н 2 О ―> 2ОΗ

СΗ 3 -СОΗ + 2ОΗ ―> СН 3 -СОО-NH 4 + 2Ag + 3NH 3 +Н 2 О

Чаще записывают суть происходящей реакции более простой схемой:

СΗ 3 -СОΗ + Ag 2 O ―> СΗ 3 -СООΗ + 2Ag

В ходе реакции окислитель восстанавливается до металлического серебра и выпадает в осадок. При этом на стенках реакционного сосуда образуется тонкий серебряный налет, похожий на зеркало. Именно за это реакция и получила свое название.

Еще одной качественной реакцией, указывающей на разницу в строении альдегидов и кетонов, является действие на группу -СОН свежим Cu(OΗ) 2 . Готовят его добавлением щелочей к растворам солей меди двухвалентной. При этом образуется голубая суспензия, которая при нагревании с альдегидами меняет окраску на красно-коричневую за счет образования оксида меди (I):

R-СОН + Cu(OΗ) 2 ―> R-СООΗ + Cu 2 O + Η 2 О

Реакции окисления

Оксосоединения можно окислить раствором KMnO 4 при нагревании в кислой среде. Однако кетоны при этом разрушаются с образованием смеси продуктов, которые не имеют практической ценности.

Химическая реакция, отражающая данное свойство альдегидов и кетонов, сопровождается обесцвечиванием розоватой реакционной смеси. При этом из подавляющего большинства альдегидов получаются карбоновые кислоты:

СН 3 -СОН + KMnO 4 + H 2 SO 4 ―> СН 3 -СОН + MnSO 4 + K 2 SO 4 + Н 2 О

Формальдегид в ходе данной реакции окисляется до муравьиной кислоты, которая под действием окислителей распадается с образованием углекислого газа:

Н-СОН + KMnO 4 + H 2 SO 4 ―> СО 2 + MnSO 4 + K 2 SO 4 + Н 2 О

Для альдегидов и кетонов характерно полное окисление в ходе реакций горения. При этом образуются СО 2 и вода. Уравнение горения формальдегида имеет вид:

НСОН + O 2 ―> СО 2 + Н 2 О

Получение

В зависимости от объемов продуктов и целей их использования способы получения альдегидов и кетонов делят на промышленные и лабораторные. В химическом производстве карбонильные соединения получают окислением алканов и алкенов (нефтепродуктов), дегидрированием первичных спиртов и гидролизом дигалогеналканов.

1. Получение формальдегида из метана (при нагревании до 500 °С в присутствии катализатора):

СΗ 4 + О 2 ―> НСОН + Η 2 О.

2. Окисление алкенов (в присутствии катализатора и высокой температуре):

2СΗ 2 =СΗ 2 + О 2 ―> 2СН 3 -СОН

2R-СΗ=СΗ 2 + О 2 ―> 2R-СΗ 2 -СОΗ

3. Отщепление водорода от первичных спиртов (катализируется медью, необходимо нагревание):

СΗ 3 -СΗ 2 -ОН ―> СН 3 -СОН + Η 2

R-СН 2 -ОН ―> R-СОН + Н 2

4. Гидролиз дигалогеналканов щелочами. Обязательным условием является присоединенность обоих атомов галогенов к одному и тому же атому углерода:

СΗ 3 -C(Cl) 2 H + 2NaOH ―> СΗ 3 -СОΗ + 2NaCl + Н 2 О

В небольших количествах в лабораторных условиях карбонильные соединения получают гидратацией алкинов или окислением первичных спиртов.

5. Присоединение воды к ацетиленам происходит в присутствии в кислой среде (реакция Кучерова):

ΗС≡СΗ + Η 2 О ―> СН 3 -СОΗ

R-С≡СΗ + Η 2 О ―> R-СО-СН 3

6. Окисление спиртов с концевой гидроксильной группой проводят с использованием металлических меди или серебра, оксида меди (II), а также перманганатом или дихроматом калия в кислой среде:

R-СΗ 2 -ОΗ + О 2 ―> R-СОН + Н 2 О

Применение альдегидов и кетонов

Необходим для получения фенолформальдегидных смол, получаемых в ходе реакции его конденсации с фенолом. В свою очередь образующиеся полимеры необходимы для производства разнообразных пластмасс, древесно-стружечных плит, клея, лаков и многого другого. Также он применяется для получения лекарственных средств (уротропина), дезинфицирующих средств и используется для хранения биологических препаратов.

Основная часть этаналя идет на синтез уксусной кислоты и других органических соединений. Некоторые количества ацетальдегида используют в фармацевтическом производстве.

Ацетон широко применяется для растворения многих органических соединений, в числе которых лаки и краски, некоторых видов каучуков, пластмасс, природных смол и масел. Для этих целей он используется не только чистым, но и в смеси с другими органическими соединениями в составе растворителей марок Р-648, Р-647, Р-5, Р-4 и др. Также его используют для обезжиривания поверхностей при изготовлении различных деталей и механизмов. Большие количества ацетона требуются для фармацевтического и органического синтеза.

Многие альдегиды обладают приятными ароматами, благодаря чему применяются в парфюмерной промышленности. Так, цитраль имеет лимонный запах, бензальдегид пахнет горьким миндалем, фенилуксусный альдегид привносит в композицию аромат гиацинта.

Циклогексанон нужен для производства многих синтетических волокон. Из него получают адипиновую кислоту, в свою очередь применяемую как сырье для капролактама, нейлона и капрона. Также он используется в качестве растворителя жиров, природных смол, воска и ПВХ.