Рекомендуемый порядок определения (расчета) границ и характеристик зон воздействия поражающих факторов аварий. Расчет последствий взрыва внутри технологического оборудования Вычислить зоны поражения ударной волной

При аварии в резервуарном парке количество газа q(t) или пара берётся: 30% от объёма наибольшего резервуара с бензином, 20% - с нефтью. При аварии на трубопроводе - до 20% вытекшей нефти и до 50% вышедшего газа. При аварии на автотранспорте - 4т бензина. При аварии на железной дороге - 10т бензина, 7т нефти. Величина дрейфа газа воздушного облака принимается равной 300 м в сторону предприятия.

При взрыве пара и газа воздушной смеси выделяют зону детонационной волны с радиусом R1 и зону ударной волны. Определяется также: радиус зоны смертельного поражения людей (R см); радиус безопасного удаления (R бу), где R ф=5 кПа; радиус предельно допустимой взрывобезопасной концентрации пара, газа Кпдвк.

Давление во фронте ударной волны Рф2 в зоне ударной волны определяют по таблице/19/

Избыточное давление в зоне детонационной волны определяется:

Радиус зоны смертельного поражения людей определяется по формуле:

где Q - количество газа, газа в тоннах;

R1 - радиус зоны детонационной волны;

R CM - радиус смертельного поражения людей.

Расчёт взрыва резервуара вертикального стального ёмкостью 5000 м3 с нефтью

Определяем количество газа, выделившегося при взрыве:

Количество нефти в тоннах:

5000?875 = 4375000 кг. = 4375 т.

Тогда количество газа:

0,2 ? 4375 = 875 т.

По формуле определяем радиус зоны детонационной волны:

R1=18,5 ?(875)1/3 = 173,00 м.

По формуле определяем радиус зоны смертельного поражения:

RCM=30 ? (875)1/3 = 280,53м.

Расстояние от центра взрыва до операторной r2= 200 м., то r2/R1=200/173 = 1,16, тогда избыточное давление от центра взрыва до операторной Рф1 = 279 кПа

При взрыве ГВС образуется зона ЧС с ударной волной, вызывающей разрушения зданий, оборудования и т. п. аналогично тому, как это происходит от УВ ядерного взрыва. В данной же методике зону ЧС при взрыве ГВС делят на 3 зоны: зона детонации (детонационной волны); зона действия (распространения) ударной волны; зона воздушной УВ.

Зона детонационной волны (зона I ) находится в пределах облака взрыва. Радиус этой зоны r 1 ,м приближенно может быть определен по формуле

где Q - количество взрывоопасной смеси ГВС, хранящейся в емкости, т.

17,5 – эмпирический коэффициент, который позволяет учесть различные условия возникновения взрыва.

В пределах зоны I действует избыточное давление (Δ Рф ), которое принимается постоянным Δ Рф1 = 1700 кПа .

Зона действия УВ взрыва (зона II ) – охватывает всю площадь разлета ГВС в результате ее детонации. Радиус этой зоны:

Избыточное давление в пределах зоны II изменяется от 1350 кПа до 300 кПа и находится по формуле

Δ Рф2= ,

где r – расстояние от центра взрыва до рассматриваемой точки, м.

Рис.1. Зоны чрезвычайной ситуации при взрыве газо-воздушной смеси. r 1 r r

В зоне действия воздушной УВ (зона III ) – формируется фронт УВ, распространяющийся по поверхности земли. Радиус зоны r3>r2, и r3 - это расстояние от центра взрыва до точки, в которой требуется определить избыточное давление воздушной УВ (ΔРф3): r3=r. Избыточное давление в зоне III в зависимости от расстояния до центра взрыва рассчитывается по формуле

Δ Рф3= , при ψ 2 ,

Δ Рф3= , при ψ 2

где ψ =0,24 r 3/ r 1 = (0,24r)/(17,5) – относительная величина.

Степени разрушений элементов объекта при различных избыточных давлениях ударной волны приведены в таблице 4 .

Расстояния от центра взрыва до внешних границ зон разрушения рассчитываются по формуле:

где ψ – определенный коэффициент, который принимаем равным:

– для зоны слабых разрушений ψ 10 = 2,825 ;

– для зоны средних разрушений ψ 20 = 1,749 ;

– для зоны сильных разрушений ψ 30 = 1,317 ;

– для зоны полных разрушений ψ 50 = 1,015 ;

Площади зон разрушения и очага поражения рассчитываем по формуле:

S = π R ²

1.3. Методика расчета параметров зоны чс (разрушений) при взрыве гвс в замкнутых объемах.

Горючие смеси газов (паров) с воздухом (окислителем) образуются в ограниченных объемах технологической аппаратуры, в помещениях промышленных и жилых зданий, вследствие утечки газа по различным причинам и воспламеняются от внешних источников зажигания. Горение ГВС в замкнутых объемах от точечного источника зажигания происходит послойно с дозвуковой скоростью распространения пламени (дефлограционное горение) при повышении давления и температуры во всем объеме. К концу полного выгорания смеси среднее значение температуры в помещении достигает значений в 1,5-2 раза больших, чем при аналогичных взрывах в открытом пространстве.

Избыточное давление взрыва гвс в помещениях можно определить по формуле

Δ Рф = (Мг Q г P 0 Z )/(V св ρ В СВ Т0 К1) = (ρ г Q г P 0 Z )/(ρ В СВ Т0 К1) ,

где Мг = V св ρ г – масса горючего газа, поступившего в помещение в результате аварии, кг;

Q г - удельная теплота сгорания ГВС, Дж/кг;

P 0 – начальное давление в помещении, кПа; его принимают в расчетах P0 = 101 кПа;

Z – доля участия продуктов во взрыве, принимается в расчетах Z = = 0,5 ;

V св – свободный объем помещения, м3; допускается принимать 80% от полного объема помещения, т. е. Vсв = 0,8 Vп;

V п – полный объем помещения, м3;

ρ В – плотность воздуха до взрыва, кг/м3 при начальной температуре Т0, 0К. Рекомендуется принимать в расчетах ρВ = 1,225 кг/м3;

СВ - удельная теплоемкость воздуха, Дж/(кг·0К); принимают СВ = = 1,01·103 Дж/(кг·0К);

К1 – коэффициент, учитывающий негерметичность помещения и неадиабатичность процесса горения, допускается принимать К1 = 2 или К1 = 3;

Т0 – начальная температура воздуха в помещении, 0К (окислителя).

Для определения радиусов зон поражения может быть предложен (например, ) следующий метод, который состоит в численном решении уравнения

k/(P(R) - P*) = I(R) - I*, (40)

причем константы k, P*, I* зависят от характера зоны поражения и определяются из табл. 4, а функции P(R) и I(R) находятся по соотношениям (7)-(13) соответственно.

Таблица 4

Константы для определения радиусов зон поражения при взрывных ТВС

#G0Характеристика действия ударной волны

Разрушение зданий

Полное разрушение зданий

Граница области сильным разрушений: 50-75 % стен разрушено или находится на грани разрушения

Граница области значительных повреждений: повреждение некоторых конструктивных элементов, несущих нагрузку

Граница области минимальных повреждений: разрывы некоторых соединений, расчленение конструкций

Полное разрушение остекления

50 % разрушение остекления

10 % и более разрушение остекления

Поражение органов дыхания незащищенных людей

50 % выживание

Порог выживания (при меньшим значениям смерт. поражения людей маловероятны)

Заметим, что в некоторых источниках предлагается более простая формула для определения радиусов зон поражения, используемая, как правило, для оценки последствий взрывов конденсированных ВВ, но, с известными допущениями, приемлемая и для грубой оценки последствий взрывов ТВС:

R = KW/(1 + (3180/W)), (41)

где коэффициент К определяется согласно табл. 5, а W - тротиловый эквивалент взрыва, определяемый из соотношения

(42)

где q- теплота сгорания газа.

Таблица 5

Уровни разрушения зданий

Характеристика повреждения здания

Избыточное давление Р, кПа

Коэффициент К

Полное разрушение здания

Тяжелые повреждения, здание подлежит сносу

Средние повреждения, возможно восстановление здания

Разрушение оконных проемов, легкосбрасываемых конструкций

Частичное разрушение остекления

Для определения радиуса смертельного поражения человека в соотношение (41) следует подставлять величину К = 3,8.

Приложение

Примеры расчетов

В результате аварии на автодороге, проходящей по открытой местности, в безветренную погоду произошел разрыв автоцистерны, содержащей 8 т сжиженного пропана. Для оценки максимально возможных последствий принято, что в результате выброса газа в пределах воспламенения оказалось практически все топливо, перевозившееся в цистерне. Средняя концентрация пропана в образовавшемся облаке составила около 140 г/м. Расчетный объем облака составил 57 тыс. м. Воспламенение облака привело к возникновению взрывного режима его превращения. Требуется определить параметры воздушной ударной волны (избыточное давление и импульс фазы сжатия) на расстоянии 100 м от места аварии.

тип топлива - пропан;

концентрация горючего в смеси С= 0,14 кг/м;

масса топлива, содержащегося в облаке, М= 8000 кг;

удельная теплота сгорания топлива q= 4,64·10Дж/кг;

окружающее пространство - открытое (вид 4).

Определяем эффективный энергозапас ТВС Е. Так как С> С, следовательно,

Е = 2МqС/С= 2·8000·4,64·10·0,077/0,14 = 4,1·10Дж.

Исходя из классификации веществ, определяем, что пропан относится к классу 2 опасности (чувствительные вещества). Геометрические характеристики окружающего пространства относятся к виду 4 (открытое пространство). По экспертной табл. 2 определяем ожидаемый режим взрывного превращения облака ТВС - дефлаграция с диапазоном видимой скорости фронта пламени от 150 до 200 м/с. Для проверки рассчитываем скорость фронта пламени по соотношению (2):

V= kМ= 43· 8000= 192 м/с.

Полученная величина меньше максимальной скорости диапазона данного взрывного превращения.

Для заданного расстояния R = 100 м рассчитываем безразмерное расстояние R:

R= R/(E/P)= 100/(4,1·10/101 324)= 0,63.

Рассчитываем параметры взрыва при скорости горения 200 м/с. Для вычисленного безразмерного расстояния по соотношениям (9) и (10) определяем величины Pи I:

P= (V/С)((- 1)/)(0,83/R- 0,14/R) = 200/340·6/7(0,83/0,63 - 0,14/0,63) = 0,29;

I= (V/C)((- 1)/)(1 - 0,4(V/C)((- 1)/))х

х(0,06/R+ 0,01/R- 0,0025/R) = (200/340)((7 - 1)/7)х

х(1 - 0,4(200/340)((7 - 1)/7))(0,06/0,63 + 0,01/0,63- 0,0025/0,63) = 0,0427.

Так как ТВС - газовая, величины P, Iрассчитываем по соотношениям (5) и (6):

P = exp(-1,124 - 1,66 ln(R) + 0,26 (ln(R))) = 0,74 ± 10%;

I = exp(-3,4217 - 0,898 ln(R) - 0,0096(ln(R))) = 0,049 ± 15%.

Согласно (11) определяем окончательные значения Pи I:

P = min(Px1, P) = min(0,29, 0,74) = 0,29;

I= min (I, I) = min(0,0427, 0,049) = 0,0427.

Из найденных безразмерных величин Pи Iвычисляем согласно (12) и (13) искомые величины избыточного давления и импульса фазы сжатия в воздушной ударной волне на расстоянии 100 м от места аварии при скорости горения 200 м/с:

P = 2,8·10 Па;

I = I(P)E/C = 2,04·10 Па·с.

Используя полученные значения P и I, находим:

Pr = 6,06, Pr = 4,47, Pr = -1,93, Pr=3,06, Pr=2,78

Это согласно табл. 3 означает: 86% вероятность повреждений и 30% вероятность разрушений промышленных зданий, а также 2,5% вероятность разрыва барабанных перепонок у людей и 1% вероятность отброса людей волной давления. Вероятности остальных критериев поражения близки к нулю.

В результате внезапного раскрытия обратного клапана в пространство, загроможденное подводящими трубопроводами, выброшено 100 кг этилена. Рядом с загазованным объектом на расстоянии 150 м находится помещение цеха. Концентрация этилена в облаке 80 г/м. Требуется определить степень поражения здания цеха и расположенного в нем персонала при взрыве облака ТВС.

Сформируем исходные данные для дальнейших расчетов:

горючий газ - этилен;

агрегатное состояние смеси - газовая;

концентрация горючего в смеси С= 0,08 кг/м;

стехиометрическая концентрация этилена с воздухом С= 0,09;

масса топлива, содержащегося в облаке, М= 100 кг;

удельная теплота сгорания горючего газа q= 4,6·10Дж/кг;

окружающее пространство - загроможденное.

Определяем эффективный энергозапас горючей смеси Е. Так как С< С, следовательно,

Е = Мq·2 = 100х4,6·10·2 = 9,2·10Дж.

Исходя из классификации веществ, определяем, что этилен относится к классу 2 опасности (чувствительные вещества). Геометрические характеристики окружающего пространства относятся к виду 1 (загроможденное пространство). По экспертной табл. 2 определяем диапазон ожидаемого режима взрывного превращения облака топливно-воздушной смеси - первый, что соответствует детонации.

Для заданного расстояния 150 м определяем безразмерное параметрическое расстояние :

R/E= 100·150/(9,2·10)= 7,16.

По соотношениям для падающей волны (14)-(19) находим:

амплитуда фазы давления

P/P= 0,064 илиP= 6,5·10Па при P= 101 325 Па;

амплитуда фазы разрежения

P_/P= 0,02 илиP_ = 2·10Па при P= 101 325 Па;

длительность фазы сжатия

длительность фазы разрежения

импульсы фаз сжатия и разрежения

II_ = 126,4 Па·с.

Форма падающей волны с описанием фаз сжатия и разрежения в наиболее опасном случае детонации газовой смеси может быть описана соотношением

P(t) = 6,5·10(sin((t - 0,0509)/0,1273)/sin(-p 50,9/0,1273))exp(-0,6t/0,0509).

Используя полученные значения Pи I, по формулам п.4 имеем:

Pr = 2,69; Pr = 1,69; Pr = -11,67; Pr = 0,76; Pr = -13,21

(при расчете Prпредполагается, что масса человека 80 кг).

Это согласно табл. 3 означает 1 % вероятность разрушений производственных зданий. Вероятности остальных критериев поражения близки к нулю.

По соотношениям для отраженной волны (21)-(26) находим:

амплитуда отраженной волны давления

Pr/P= 0,14 илиPr= 1,4·10Па при P= 101325 Па;

амплитуда отраженной волны разрежения

Pr_/P= 0,174 илиPr_ = 1,74·10Па при P= 101325 Па;

длительность отраженной волны давления

длительность отраженной волны разрежения

импульсы отраженных волн давления и разрежения:

I= 308 Па·с;

I_ = 284,7 Па·с.

Форма отраженной волны при взаимодействии со стенкой

P(t) = 1,4·10(sin((t - 0,0534)/0,1906)/sin(-0,0534/0,1906))exp(-0,8906t/0,0534).

Используя полученные значения Pи I, по формулам п. 4 имеем:

Pr = 4,49; Pr = 3,28; Pr = -7,96; Pr = 1,95; Pr = -9,35.

Это согласно табл. 3 означает вероятности: 30 % повреждений и 4 % разрушений производственных зданий. Вероятности остальных критериев поражения близки к нулю.

Характерными особенностями взрывов ТВС являются:

Возникновение разных типов взрывов: детонационного, дефлаграционного или комбинированного;

При взрывах образуется 5 зон поражения: бризантная (детонационная), действия продуктов взрыва (огненного шара), действия ударной волны, теплового поражения и токсического задымления;

Зависимость мощности взрыва от параметров среды, в которой происходит взрыв (температура, скорость ветра, плотность застройки, рельеф местности);

Для реализации комбинированного или детонационного взрыва для ТВС обязательным условием является создание концентрации продукта в воздухе в пределах нижнего и верхнего концентрационного предела.

Дефлаграция – взрывное горение с дозвуковой скоростью.

Детонация – процесс взрывчатого превращения вещества со сверхзвуковой скоростью.

Расчет радиусов зон поражения (R ) и избыточного давления во фронте ударной волны (DР ф) при взрыве производится по следующим формулам:

1. Бризантная зона (зона детонации):

где М – масса ТВС в резервуаре (кг). За М принимается 50 % вместимости резервуара при одиночном хранении и 90 % – при групповом хранении.

Для бризантной зоны DР ф =1750 кПа.

2. Зона продуктов горения (зона огненного шара):

Радиус зоны:

(2)

Избыточное давление во фронте ударной волны рассчитывается:

(3)

Для остальных зон их радиусы рассчитываются по следующей формуле:

. (4)

3. Зона действия ударной волны:

Слабые разрушения – повреждения или разрушения крыш и оконных и дверных проемов. Ущерб – 10…15 % от стоимости зданий.

Средние разрушения – разрушение крыш, окон, перегородок, чердачных перекрытий, верхних этажей. Ущерб – 30…40 %.

Сильные разрушения – разрушения несущих конструкций и перекрытий. Ущерб – 50 %. Ремонт нецелесообразен.

Полное разрушение – обрушение зданий.

Тепловой импульс (кДж/м 2) определяется по формуле:

где I – интенсивность теплового излучения взрыва ТВС на расстоянии R , кДж/м 2 ×с

, (6)

где Q 0 – удельная теплота пожара, кДж/м 2 ×с; F – угловой коэффициент, характеризующий взаимное расположение источника горения и объекта

(7)

Т – прозрачность воздуха

(8)

t св – продолжительность существования огненного шара (с)

(9)


Таблица 15 - Результаты расчета зон поражения (для человека)

Характеристика зоны поражения

Вероятность поражения

человека, Рпор


Глубина зоны, м

Зона безопасности

Рпор

>144

Зона возможного слабого поражения

0,01

144

Зона возможного среднего поражения

0,33

66

Зона возможного сильного поражения

0,5

55

Зона безусловного поражения

Рпор>0,99

21

Таблица 16 - Результаты расчета зон повреждения зданий

Выводы: , что при авариях с утечкой ЛВЖ на автомобильном транспорте количество бензина, участвующего в аварии составит от 5 д о 20 тонн . Площадь зоны разлива нефтепродуктов составит от 120 до 540 м 2 . Радиус зон составляет: безопасного удаления - от 58 до 144 м ; сильных разрушений - до 89 м ; полных разрушений - от 8 до 13 м . Расстояние от границы жилой зоны до места аварии – от 25 до 100 м . При этом возможное количество погибших может составить от 1 до 10 до 50 человека. Ущерб - до 5 млн. рублей.

в) аварии при перевозке СУГ.

Поражающие факторы:

1. Воздушная ударная волна, образующаяся в результате взрывных превращений топливо-воздушной смеси (ТВС) при разливе топлива в открытом пространстве;

2. Тепловое излучение горящих разлитий.

Исходные данные для расчета последствий ЧС:

1. Предполагается, что во взрыве облака ТВС принимает участие масса СУГ АЦ (15 м 3), заполненного на 80 % .

3. Плотность СУГ - 530 кг/м 3 .

4. Разгерметизация резервуара происходит мгновенно.

Таблица 17 - Результаты расчетов радиусов зон поражения людей

Таблица 18 - Результаты расчетов радиусов зон разрушения зданий


Избыточное давление, ∆Р (кПа)

Степень разрушения

Радиус зоны разрушения,

100

Полное разрушение

49,6

53

50 % разрушение

70,0

28

Среднее разрушение

100,0

12

Умеренное разрушение

176,4

3

Малые повреждения

(Разбита часть остекления)


538,8

Выводы: В результате приведенных расчетов видно, что при авариях с утечкой СУГ на транспорте его количество, участвующего в аварии составит от 5 д о 20 тонн . Радиус зон составляет: безопасного удаления - до 540 м ; сильных разрушений - до 70 м ; полных разрушений - до 50 м . Расстояние от границы жилой зоны до места аварии при перевозке автомобильным транспортом – от 25 до 100 м.

При этом возможное количество погибших может составить от 1 до 10 человек, количество пострадавших - до 50 человека. Ущерб - до 5 млн. рублей.

2.2.5. Анализ возможных последствий аварий на газовом хозяйстве

Меловатского сельского поселения
По территории Меловатского сельского поселения проходят газопроводы высокого, среднего и низкого давления диаметром от 100 до 325 мм с давлением Р от 0,0 3 до 55 кгс/см 2 . Кроме того, на расстоянии 5-ти км южнее окраины с. Новомеловатка проходит трасса магистрального газопровода «Средняя Азия – Центр ІІІ», три нитки диаметром 1,22 м и давлением 55 кгс/см 2 (5,5 МПа), производительностью 40 млн. м 3 в сутки, заглубление – 0,8 м. Разрушения, повреждения газопровода могут быть в результате технических дефектов, а также внешних механических воздействий (строительная деятельность, повреждения транспортом, террористические акты, военные действия).

При аварийном повреждении подземного газопровода образуется локальная зона загазованности непосредственно в месте разгерметизации. При этом не создаются условия для самозажигания струи газа. Возгорание возможно лишь в случае попадания в зону утечки источника инициирования зажигания.

При образовании воронки выброса газа и при наличии источника инициирования возгорания (воспламенения) газа в начальный момент времени возникает факельное горение метана. При отсутствии в начальный момент времени источника зажигания будет формироваться газовоздушное облако. При отсутствии ветра газовоздушное облако всплывает вверх и рассеивается. Однако может возникнуть вероятность взрыва при наличии источника воспламенения. Так как метан легче воздуха и газовоздушное облако обладает плавучестью, то при наличии ветра происходит его дрейф и облако может рассеяться.
В качестве поражающих факторов в разделе ИТМ рассматривается:

Воздушная ударная волна, образующаяся в результате взрывных превращений ГВС;

В качестве показателей последствий взрывных явлений и пожара приняты:

1. Степень поражения людей (смертельное поражение, тяжелые, средние, легкие травмы

порог поражения);

2. Степень разрушения окружающей застройки (полное, 50% разрушение, умеренное разрушение, малые повреждения, повреждение остекления);

3. Воздействие тепловых потоков на здания и сооружения оценивается возможностью воспламенения горючих материалов.

Основными Аварийными ситуациями на газовом хозяйстве Меловатского сельского поселения являются:

А-1 - разрушение (разгерметизация) газопровода (ГРП, ШРП);

А-2 - разрушение (разгерметизации) технологического оборудования котельных.
Оценка количества опасного вещества, участвующего в авариях

на объектах газового хозяйства:
Исходные данные:
Длина максимальных участков газопроводов:

Для газопроводов высокого давления (магистрального и внутрипоселковых сетей) – 0,5 км;

Для газопроводов среднего и низкого давления – 0,1 км;
Диаметры газопроводов (внутренние):

Газопроводов высокого давления – 1200 и 325 мм;

Газопроводов среднего и низкого давления (внутриквартальных и внутрипоселковых сетей) – 100 мм (максимальный);
Рабочее максимальное давление в трубопроводе:

Магистрального газопровода – 5,5 МПа;

Газопроводов высокого давления – 0,6 МПа;

Газопроводов среднего давления (внутриквартальных и внутрипоселковых сетей) – 0,3 МПа;

Газопроводов низкого давления (внутриквартальных и внутрипоселковых сетей) – 0,03 МПа;
Максимальный объём перекачки газа:

Магистрального газопровода высокого давления – q = 40 млн. м 3 / сутки (1,67 млн. м З /час (463 м З /с)) – по трём веткам; по одной q = 13,3 млн. м 3 / сутки (0,56 млн. м З /час (154 м З /с))

Газопроводов высокого давления (внутрипоселковых сетей) – q = 1100 м 3 / сутки (0,31 м З /с));

Газопроводов низкого давления (внутриквартальных и внутрипоселковых сетей) – q = 100 м 3 / сутки (0,031 м З /с).
Результаты расчётов:
Для газопроводов высокого давления:
диаметром 1,22 м:

V 1m = q*T = 154*120 = 18520 м З.

V 2m = 0,01π*5500*0,6 2 *500 = 31086 м З.

М = (18520 + 31086)*0,68 = 49606*0,68 = 33732 кг 3373,2 кг ).
диаметром 0,325 м:

V 2m = 0,01π*600*0,16 2 *100 = 48,2 м З.

Масса газа, поступившего в окружающую среду, таким образом, составляет:

М = (37,2 + 48,2)*0,68 = 85,4*0,68 = 58 кг . Однако, при взрывах ТВС на открытом пространстве в создании поражающих факторов ЧС участвует 10% (5,8 кг ).
Для газопроводов среднего давления:

диаметром 0,1 м:

V 1m = q*T = 0,31*120 = 37,2 м З.

V 2m = 0,01π*300*0,05 2 *100 = 2,36 м З.

Масса газа, поступившего в окружающую среду, таким образом, составляет:

М = (37,2 + 2,36)*0,68 = 39,56*0,68 = 26,9 кг . Однако, при взрывах ТВС на открытом пространстве в создании поражающих факторов ЧС участвует 10% (2,7 кг ).
Для газопроводов низкого давления:

диаметром 0,1 м:

V 1m = q*T = 0,031*120 = 3,72 м З.

V 2m = 0,01π*30*0,05 2 *100 = 0,28 м З.

Масса газа, поступившего в окружающую среду, таким образом, составляет:

М = (3,72 + 0,28)*0,68 = 4*0,68 = 2,7 кг . Однако, при взрывах ТВС на открытом пространстве в создании поражающих факторов ЧС участвует 10% (0,27 кг ).

Указанным количеством при расчёте зон поражения можно пренебречь. Зоны поражения не выйдут за охранно-защитную зону (2 м влево и вправо от оси газопровода).
при разрушении (разгерметизации) технологического оборудования котельной

Максимальная масса природного газа, участвующего в аварии при разрушении технологического оборудования котельной, в первую очередь зависит от объёма помещений котельных (таблица 19). Всего на территории поселения 2 котельных.
Таблица 19 - Характеристика котельных:

Для того, чтобы произошёл взрыв ТВС, необходимо, чтобы из-за неисправности оборудования утечка газа составила от 5 до 15 %. Следовательно, объём утечки должен составлять:

При 5%: 120 м 3 х 0,05 = 6 м 3 (при плотности газа 0,68 кг· м 3 – 4 кг)

При 15%: 120 м 3 х 0,15 = 18 м 3 (при плотности газа 0,68 кг· м 3 – 12 кг)

Максимальная масса газа, поступившего в помещение котельной, может составить 12 кг.
Количество опасного вещества, участвующего в реализации опасных сценариев ЧС приведено в таблице № 20:
Таблица № 20: - Количество опасного вещества участвующего в авариях:


п/п


Название аварийной ситуации.

Объём

природного газа

(м 3)


Количество опасного вещества

(кг)


Аварии на объектах газового хозяйства (А-1):

1.

Разрушение (разгерметизация) магистрального газопровода в/д диаметром 1,22 м

33732

33732 кг

(33,732 т.)


2.

Разрушение (разгерметизация) газопровода в/д диаметром 0,325 м

85,4

58 кг

(0,058 т.)


3.

Разрушение (разгерметизация) газопровода с/д диаметром 0,1 м

40

27 кг

(0,027 т.)


4.

Разрушение (разгерметизация) газопровода н/д диаметром 0,1 м

4

2,7 кг

(0,0027 т.)


Аварии на объектах котельного хозяйства (А-2):

7

Разрушение (разгерметизация) технологического оборудования котельной.

Природный газ

12

Расчет вероятных зон действия поражающих факторов

при разрушении (разгерметизации) газопроводов (А-1)
Аварии при разгерметизации газопроводов сопровождаются следующими процессами и событиями: истечением газа до срабатывания отсекающей арматуры (импульсом на закрытие арматуры является снижение давления продукта); закрытие отсекающей арматуры; истечение газа из участка трубопровода, отсеченного арматурой.

В местах повреждения происходит истечение газа под высоким давлением в окружающую среду. На месте разрушения в грунте образуется воронка. Метан поднимается в атмосферу (он легче воздуха), а другие газы или их смеси оседают в приземном слое. Смешиваясь с воздухом газы образуют облако взрывоопасной смеси. Статистика показывает, что примерно 80 % аварий сопровождается пожаром. Искры возникают в результате взаимодействия частиц газа с металлом и твердыми частицами грунта. Обычное горение может трансформироваться во взрыв за счет самоускорения пламени при его распространении по рельефу и в лесу.

При оперативном прогнозировании принимают, что процесс горения при этом развивается в детонационном режиме. Раскрытая схема к определению давлений при аварии на газопроводе приведена на рисунке 1.

Рисунок 1 - Расчетная схема к определению давлений при аварии на газопроводе

Р – давление в зоне детонации; Р ф - давление во фронте воздушной ударной волны; r 0 - радиус зоны детонации; R - расстояние от расчетного центра взрыва; 1 - зона детонации; 2 - зона воздушной ударной волны (R>r 0)

Дальность распространения облака (см. рис1) взрывоопасной смеси в направлении ветра определяется по эмпирической формуле

L = 25
, м, (3.49)
где М - массовый секундный расход газа, кг/с;

25 - коэффициент пропорциональности, имеющий размерность м 3/2 /кг 1/2 ;

W – скорость ветра, м/с.

Тогда граница зоны детонации, ограниченная радиусом r 0 , в результате истечения газа за счет нарушения герметичности газопровода, может быть определена по формуле

r 0 = 12,5, м. (3.50)

Массовый секундный расход газа М из газопровода для критического режима истечения, когда основные его параметры (расход и скорость истечения) зависят только от параметров разгерметизированного трубопровода, может быть определен по формуле

М =
, кг/с, (3.51)

где - коэффициент, учитывающий расход газа от состояния потока (для звуковой скорости истечения =0,7); F - площадь отверстия истечения, принимаемая равной площади сечения трубопровода, м 2 ; - коэффициент расхода, учитывает форму отверстия ( = 0,7- 0,9), в расчетах принимается  = 0,8; Р г - давление газа в газопроводе, Па; V г - удельный объем транспортируемого газа при параметрах в газопроводе (определяется по формуле 3.52).

V г = R 0
, м 3 / кг, (3.52)
где Т - температура транспортируемого газа, К;

R 0 - удельная газовая постоянная, определяемая по данным долевого состава газа q к и молярным массам компонентов смеси из соотношения

R 0 = 8314
, Дж / (кгК), (3.53)

где 8314 - универсальная газовая постоянная, Дж / (кмольК);

m к - молярная масса компонентов, кг/кмоль;

n - число компонентов.
В зоне действия детонационной волны давление принимается равным 1,7 МПа. Давление во фронте ВУВ на различном расстоянии от газопровода определяется также с использованием данных таблицы 21.
Таблица 21 - Давление во фронте ударной волны в зависимости от расстояния до шнура взрыва .


r/r 0

0 - 1

1,01

1,04

1,08

1,2

1,4

1,8

2,7

Р ф,кПа

1700

1232

814

568

400

300

200

100

r/r 0

3

4

5

6

8

12

20

-

Р ф,кПа

80

50

40

30

20

10

5

-

При прогнозировании последствий случившейся аварии на газопроводе зону детонации и зону действия ВУВ принимают с учетом направления ветра. При этом считают, что граница зоны детонации распространяется от трубопровода по направлению ветра на расстояние 2r 0 . В случае заблаговременного прогнозирования, зона детонации определяется в виде полос вдоль всего трубопровода шириной 2r 0 , расположенных с каждой из его сторон. Это связано с тем, что облако взрывоопасной смеси может распространяться в любую сторону от трубопровода, в зависимости от направления ветра. За пределами зоны детонации по обе стороны от трубопровода находятся зоны действия ВУВ. На плане местности эти зоны также имеют вид полосовых участков вдоль трубопровода.
При разработке разделов проекта ИТМ ГОЧС на планах местности вдоль магистральных нефте- и газопроводов наносятся зоны возможных сильных разрушений, границы которых определяются величиной избыточного давления 50 кПа.
При проведении оперативных расчетов следует учитывать, что в зависимости от класса магистрального трубопровода, рабочее давление газа Р г может составлять: для газопроводов высокого давления - 0,6 – 7.5 МПа; среднего давления - от 0,3 до 0,6 МПа; низкого давления - до 0,3 МПа. Диаметр газопровода может быть от 100 до 1200 мм. Температура транспортируемого газа может быть принята в расчетах t 0 = 40 0 С. Состав обычного газа, при отсутствии данных, может быть принят в соотношении: метан (СН 4) - 90 %; этан (С 2 Н 6) - 4 %; пропан (С 3 Н 8) - 2 %; Н-бутан (С 4 Н 10) - 2 %; изопентан - (С 5 Н 12) - 2 %.

Расчет

радиусов зоны детонации r 0 при взрыве участков газопроводов
Исходные данные :
d = 1,2 м; Р г = 5,5 МПа; t = 40 0 С; W = 1 м/с; =0,8.
Расчет:

1. R 0 =8314,4
=8314,4(
) = 486 КДж/(кг*К).

2. V г = R 0
= 254 м 3 /кг.

3. М = = 147,15 кг/с.

4. r 0 = 12,5 = 152 м.

Отсюда зона детонации будет равна: 2r 0 = 304 м (с каждой стороны трассы газопровода).
Используя таблицу 21 получаем радиус зоны возможных сильных разрушений, границы которой определяются величиной избыточного давления 50 кПа:
r = 4r 0 =608 м
Аналогичные расчёты выполнены и для других участков газопроводов. Полученные данные сведены в таблицу 22:


Таблица 22 - Радиусы зон поражения при воздействии избыточного давления

Степень поражения

Избыточное давление,

(∆Р кПа)


Радиус зоны, м для газопроводов

м/г 1,42 м

в/д 0,325 м

с/д 0,1 м

н/д 0,1 м

Радиус зоны детонации r 0

1700

152

9,5

5

2,7

Разрушение зданий:

Полное разрушение зданий

100

410

25,7

13,5

7,3

50 %-ное разрушение зданий

53

608

38

20

11

Средние повреждения зданий

28

912

57

30

16,2

Умеренные повреждения зданий

12

1520

95

50

27

Малые повреждения (разбита часть остекления

3

3500

285

150

75

Поражения людей:

Крайне тяжелые

100

410

25,7

13,5

7,3

Тяжелые травмы

60

550

28,5

15

9

Средние травмы

40

760

47,5

25

13,5

Легкие травмы

20

1216

76

40

22

Пороговые поражения

5

3040

190

100

54

Расчет вероятных зон действия поражающих факторов при разрушении (разгерметизации) технологического оборудования котельных (А-2)
В результате разрушения газопроводов и технологического оборудования с горючими веществами возможен их выброс внутрь здания или на открытую площадку с образованием газопаровоздушной смеси (ГПВС). Серьезную опасность для персонала, и технологического оборудования представляет взрыв образовавшейся ГПВС.

Процесс горения со стремительным высвобождением энергии и образованием при этом избыточного давления (более 5 кПа) называется взрывным горением.
Различают два принципиально разных режима взрывного горения: дефлаграционный и детонационный.
При дефлаграционном горении распространение пламени происходит в слабо возмущенной среде со скоростями значительно ниже скорости звука, давление при этом возрастает незначительно.

При детонационном горении (детонации) распространение пламени происходит со скоростью, близкой к скорости звука или превышающей ее.

Инициирование (зажигание) газовоздушной смеси с образованием очага горения возможно при наличии источника зажигания.

К основным факторам, влияющим на параметры взрыва, относят: массу и тип взрывоопасного вещества, его параметры и условия хранения или использования в технологическом процессе, место возникновения взрыва, объемно-планировочные решения сооружений в месте взрыва.
Взрывы на котельной можно разделить на две группы - в открытом пространстве и производственном помещении.

Аварии со взрывом могут произойти на пожаровзрывоопасных объектах. К пожаровзрывоопасным объектам относятся объекты, на территории или в помещениях которых находятся (обращаются) горючие газы, легковоспламеняющиеся жидкости и горючие пыли в таком количестве, что могут образовывать взрывоопасные горючие смеси, при горении которых избыточное давление в помещении может превысить 5 кПа. В этом случае газо-, паро-, пылевоздушная смесь займет частично или полностью весь объем помещения.
Котельная:
Сценарий С-1 : (Разгерметизация технологического оборудования, утечка газа, воспламенение на месте выброса, ликвидация горения).

Масса природного газа, который может поступить в котельную – 12 кг.

Природный газ не токсичен. Однако из-за того, что газ не пригоден для дыхания, то он может представлять опасность для персонала внутри помещения котельной. Необходимо соблюдать правила пожарной безопасности, не пользоваться открытым огнём и использовать средства индивидуальной защиты (изолирующий противогаз). При этом от удушья может погибнуть 1 человек из числа персонала котельной.

Сценарий С-2 (Разгерметизация технологического оборудования, утечка газа, воспламенение на месте выброса, горение).

Исходные данные:

Частота реализации сценария год -1: 4*10 -5

Наименование вещества: природный газ

Масса вещества, кг: 12

Рассматриваемые сценарии:

Пожар утечки.
Результаты расчета:
(поражающие факторы пожара не выйдут за пределы котельной)
Сценарий С-3 (Разгерметизация оборудования, утечка газа, воспламенения на месте выброса нет, образование облака ТВС, источник зажигания, взрыв ТВС с ударной волной).